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ABSTRACT

This report presents security policies for microprocessor-
based systems and gives an example of how to enforce these
policies, using an independent, hardware-based monitor, in a
hypothetical single-processor system. The purpose of these
policies is to detect erroneous behavior of the microprocessor
system and to guarantee that accesses (read, write, or
execute) , by executable procedures, to the various system

resources (other procedures, data areas, and peripheral ports)
are in accordance with rules that are defined precisely and
completely. We present the main result of our research as a
"Second-Order Security Policy”, which describes a segmentation
of system resources into a number of “Blocks” and defines
access rights of each “Process Block” to all Blocks in the
system. The hardware-monitor example is a conceptual design
of an independent monitor that we believe can be built to
enforce the second-order policy in real time. This approach
will be effective in preventing erroneous accesses to data
structures and peripherals and in detecting errors in the
transfer of program control from Block to Block.
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Definitions

A--(from the conceptual example) the “auxiliary” bit of the
Rights Vector; a value of one indicates that the auxiliary
operation indicated by the AR control line is allowed for the
current Subject/Object coincidence.

Access to Data Memory (ADM )--an access, by a Subject, that
will result in data being read/written to/from a memory cell
or port location.

Access to Instruction Memorv (AIM)--an access, by a Subject,
that will result in a new instruction being fetched and
executed.

Address-- a digital pattern appearing on the system’s address
bus . This pattern indicates which memory or port location is
currently being accessed by the microprocessor.

Auxiliarv Reauest (AR] Control Line--a control line
indicating, when asserted, that an auxiliary operation,
related in some known way to the current Subject/Object
coincidence, is occurring.

B--the number of Blocks in the hypothetical system described
In the conceptual design example in this report.

Block--A group of contiguous addresses, either of ROM or RAM
memory, or of port locations. Blocks are distinct; that is,
they don’t have any common addresses.

Data Block-- a Memory Block that can be read or written as data
but cannot be executed.

~--direct memory access, an operation wherein a smart
peripheral, in concert with a DMA controller, can bypass the
microprocessor and write to or read from memory directly.

Executinq --a Process Block is said to be executing when the 1P
points to an address within that Process Block.

Instruction Fetch (IF) Control Line--a control line
indicating, when asserted, that the current access is an AIM.

Instruction Pointer (IP)--a Pointer whose value equals the
address of the instruction to be executed by the processor.

Lower Bound (of a Block)--numerically, the smallest address of
a Block.
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Memory Block--a Block composed entirely of either RAM or ROM.

Memory Pointer (MP)--a Pointer whose value equals the address
of a memory cell or port location to be read or written as
data.

Memory Read (MR) Control Line--a control line indicating, when
asserted, that the current access is an ADM for reading.

Memory Write (MW) Control Line--a control line indicating,
when asserted, that the current access is an ADM for writing.

Obiect--a Block that is accessed by a Subject.

Obiect Index--a unique index corresponding to the Object Block
pointed to by the current value of either 1P or MP. The
Object Index is used as a column coordinate for locating the
current Rights Vector.

p--the number of Process Blocks in the hypothetical system
described in the conceptual design example in this report.

Port Access (PA) Control Line--a control line indicating, when
asserted, that the current access is to a Port Block.

Port Block-- a Block composed of contiguous port addresses.

Process Block--a Memory Block that is executable. This
implies that the Instruction Pointer (1P) can point to
addresses within a Process Block. A Process Block could
potentially also be read or written as though it were data.

Process Timer-- a timer used to measure how long a process has
been executing.

~--(from the conceptual example) the “read” rights bit of the

Rights Vector; a value of one indicates that the Subject is
allowed to read the Object Block to which this Rights Vector
corresponds.

Readinq --a Subject is said to be reading from an Object when
the Subject executes an instruction that causes the Memory
Pointer to point to an address that falls within (and
inclusive of) the lower and upper address bounds of the Object
and the MR (Memory Read) signal line is asserted.



Riqhts Vector-- a digital pattern that contains information
about what rights a Subject (Process) Block has with respect
to an Object Block. A Subject will be assigned a Rights
Vector for each Block in the system (including one for
itself) . A complete set of Rights Vectors, therefore,
comprises a matrix of vector values.

Subiect-- the Process Block that is currently executing.

Subiect Index--a unique index corresponding to the Process
that is currently executing (the Subject). The Subject Index
is used as a row coordinate for locating the applicable Rights
Vector.

Trusted Control Lines-- signal lines derived from control bits
(CO, Cl, and C2 in the conceptual example) contained in the
Rights Vector of a Subject-Object pair. These lines can be
used to enable ports or to control critical system resources.

Q--(from the conceptual example) the “used” bit of the Rights
Vector; a value of one indicates that this Rights Vector is in
use and is, therefore, valid.

Unused Block--a Block that is not to be used as a Process
Block, a Data Block, or a Port Block. An Unused Block need
not correspond to addresses of actual physical memory elements
contained in the system.

Umer Bound (of a Block)--numerically, the largest address of
a Block.

VJ--(from the conceptual example) the “write” rights bit of the
Rights Vector; a value of one indicates that the Subject is
allowed to write the Object Block to which this Rights Vector
corresponds.

Writinq --a Subject is said to be writing to an Object when the
Subject executes an instruction that causes the Memory Pointer
to point to an address that falls within (and inclusive of)
the lower and upper address bounds of the Object and the MW
(Memory Write) signal line is asserted.

~--(from the conceptual example) the “execute” rights bit of
the Rights Vector; a value of one indicates that the Subject
is allowed to execute (transfer control to) the Object Block
to which the Rights Vector corresponds.

-8-



Introduction

In microprocessor-based systems, the microprocessor usually
has a variety of duties to perform. There is usually a single
processor. That processor is normally capable of addressing
any portion of memory (RAM or ROM) or communicating with any
peripheral device. When and in what way the processor
accesses each resource (RAM, peripherals, etc.) is controlled
by instructions stored in either RAM or ROM. Many of these
systems have little or no designed-in mechanism for checking,
in real time, that the processor is performing as it should.
For a system like this, one simply observes the system’s
functional outputs; when these outputs appear to be incorrect,
he deduces that the system has malfunctioned. Some single-
processor systems employ software-based checking that attempts
to detect improper system behavior. This is better than no
checking, but this approach cannot be said to provide
independent verification that the system is functioning
properly, because the processor is policing itself and other
system components. Finally, some systems have special
hardware components which, in combination with software
measures, are used to detect error conditions. This last
approach to error detection is the most effective; however, it
is also the most costly.

The first approach (i.e., performing no checks) is probably
not acceptable in any system. Software-only checking is
sufficient in many noncritical applications where the penalty
of a malfunction is not high. But in cases for which a system
error can lead to highly undesirable consequences (in terms of
expense or damage to property or human life) , perhaps only the
last approach is acceptable. Several design approaches exist
for software-only checking, and there are many ways to
implement checking with hardware support. But before deciding
upon a particular approach, the designer should consider what
he wants the checking to accomplish; that is, what security
policies should the policing mechanism enforce?

In this report, we present a set of security policies for a
microprocessor-based system. This is not the only possible
set of policies one could devise, but this set is easy to
understand, and it could be implemented, given that certain
design costs and trade-offs could be accepted. The initial
discussion will deal only with the policies themselves,
independent of their implementation. Later, we will discuss
how these policies can be implemented by describing a specific
implementation of an independent hardware-based monitor.
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Scone and Intent

We intend these concepts to apply to small-scale embedded
systems up through dedicated (i.e., single-purpose) PC-based
systems. We also assume that, if these concepts are applied
to something as complex as a PC, that system supports only a
single, custom-designed application program.

We intend to apply these security policy concepts to embedded-
processor applications in the areas of access-control systems
(where security is a prime consideration) and satellite
systems (where high reliability and fault tolerance are
required) .

Assum~tions

Several assumptions will be made in the discussion of the
security policies and the implementation example. First, we
assume that the system-specific parameters used to describe
the security policies will be fixed at the time the system
begins executing and will not change with time. That is, the
policies are static in nature. We also assume that the
designer can define these parameters in absolute terms with
respect to memory address bounds and port addresses of the
system. We assume that all executable instructions come from
either RAM or ROM memory. Finally, we assume that all real-
time information required to enforce the policy is available
to the mechanism policing the system. Specifically, the
approach we propose would not be practical for a system using
a processor that has all RAM and ROM within the processor
chip. We will later discuss how some restrictions mentioned
here could be lifted.
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Classes of Errors and Their Sources

Error TvDes

You will see later that the kinds of errors our security
policies are effective against are those that either
immediately, or after some period of propagation, cause the
processor to try to access memory or peripherals in some way
that the policy considers to be improper or illegal.
Therefore, we will be able to detect many errors that affect
either the transfer of control (via the Instruction Pointer)
within the program or the addressing of data memory or
peripherals (via the Memory Pointer). Of course these are not
the only types of errors that can occur. For example, it
would be possible for a Process to make a number of erroneous
computations, return the incorrect results to memory as stored
quantities, and never have its control flow or memory
addressing behavior corrupted by the errors. The policies we
propose here would not detect errors of this type.

Error Sources

We donlt want to single out any particular source of error;
rather, we’ll just mention some possible ones. Errors can
either be hardware- or software-based. If the error is of
hardware origin, it may have been caused by a design error or
by a component malfunction such as a defective memory, a bad
peripheral, a faulty interface or glue circuit, or by a defect
in the microprocessor itself. A hardware malfunction could be
permanent (a damaged gate) or it could be transient (this
could occur in a radiation environment) .

Software errors will originate in one of the following ways.
The software specification might be either incomplete or
incorrect. The high-level software design may not meet the
specifications. Finally, the programmer may not accurately
implement the design. In most cases, software errors will be
unintentional; however, in some cases, errors might be
intentionally included. Any of the sources discussed here
could cause errors that would manifest themselves in
corruption of either control-flow or memory-access behavior.



Motivation for the ADDroach

Many of the concepts presented here are adaptations of ideas
taken from the open literature on computer security. Over the
past twenty years, a significant amount of research and
development work has been done relating to secure computer
installations and secure operating systems. A search of
computer security literature will yield a majority of
references dealing with mainframe computers, not
microprocessor-based systems. While PC security issues have
recently become a popular topic, most articles on computer
security before 1984 were concerned with machines no smaller
than a mini-computer. Security was discussed in the context
of a large machine running multiple applications programs,
either on a batch or time-sharing basis. References [1], [2],
[3] and [4] represent these types of papers. In these
articles, the concept of security policies is introduced.
Executing programs are viewed as processes or subjects; other
programs, data structures, or peripherals, are viewed as
objects. A discretionary policy allows a subject to define
the access rights of other subjects with respect to any object
it creates. A mandatory policy places each subject or object
into one of a number of classification categories (for
example, unclassified, confidential, and secret) . Composite
security policies apply the discretionary and mandatory
policies simultaneously while adding further constraints, such
as the rule that no subject can write an object to a lower
classification level. These policies are intended to help
protect sensitive information and prevent damage and misuse of
objects by unauthorized subjects.

Not all of the concepts described in the referenced papers can
be applied directly to the problem of error detection on a
single-microprocessor-based system. However, we believe that
the idea of deriving and enforcing security policies is one
that can be applied successfully to any system, regardless of
its size. These policies give the designer a formal mechanism
for defining, in a macroscopic way, how the system should
behave.
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A First-Order Security Policy

For an embedded, one-processor system, the most basic, or
first-order, policy would be to divide all available RAM and
ROM memory into conceptual segments, as shown in Figure I.
This segmentation is not meant to imply that all portions of
segments of a particular type (DATA RAM, UNUSED ROM, etc.) are
contiguous.

Figure 1. Memory Segmentation; First-Order policy

w
----- ----- ----- ---

I I
I EXECUTABLE
I I
------ ------ ------

1 I
DATA I

I I

I I
I UNUSED
I I

~
----- ----- ----- ___

I
EXECUTABLE I

I-- - - - ---- - - - .- _-- _

I
I DATA
I
----- - - -- _________
I I
I UNUSED
I I

The first-order policy is then defined by Table 1, below. In
Table 1, a YES entry indicates that the mechanism enforcing
the policy will allow the action indicated in the column
heading. A NO entry indicates that the enforcement mechanism
will not allow the action indicated. For example, if the
microprocessor tried to execute from an area of RAM to be used
only for data, the mechanism enforcing the policy would detect
the error and disallow the illegal action. NOTE 1 refers to
the fact that one could forbid the reading of executable RAM
or ROM, if desired. If these executable memory areas were to
be checked for integrity (e.g. through use of checksums) ,
reading of these areas would have to be allowed.



Table

MEMORY CLASS

EXECUTABLE

DATA

UNUSED

EXECUTABLE
ROM

DATA
ROM

UNUSED
ROM

1. First-Order

EXECUTE

YES

NO

NO

YES

NO

NO

Security Policy

READ

YES
(NOTE 1)

YES

NO

YES
(NOTE 1)

YES

NO

Notice that we have assumed nothing about the inner

WRITE

YES

YES

NO

NO

NO

NO

workinqs
of the executable code. We have simply segmented memory i~to
six different areas and created a set of rules that states how
these areas can be used by the microprocessor (e.g., READ,
WRITE, etc.). We also haven’t considered peripherals yet;
however, peripherals could be treated much like RAM memory,
with the exception that peripherals would not be executable.
In other words, instructions would not be fetched directly
from peripherals by the microprocessor and immediately
executed.

A Second-Order Securitv Policv

Segmentation of Resources

Now we will further subdivide RAM and ROM and include
peripherals to define a more detailed security policy. We
will divide all available RAM, ROM, and peripheral-port
addresses into a number of Blocks (see Definitions) . Blocks
consist of groups of contiguous addresses, and Blocks don’t

“
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overlap one another (no common addresses) , but they completely
cover all memory and peripheral (Port) resources (every
available address is in some Block) . The diagram below
depicts this segmenting of the resources.

Figure 2. Resource Segmentation; Second-Order Policy

~
------ ------ ---

I RAM BLOCK 1 I
---------------
IRAMBLOCK21

IRAMBLOCK31

1. I
1.
----- ----- -----
] RAM BLOCKN”I

I ROM BLOCK 1 I
---------------
I ROM BLOCK 2 I

I ROM BLOCK 3 I
---------------

1= I
1= I----- ----- -----
I ROM BLOCK M I

PORTS
-----------__-__
I PORT BLOCK 1 I

I PORT BLOCK 2 I
----------_____-
I PORT BLOCK 3 I

1. I
1.
----- ----- ______
I PORT BLOCK K I
----------______

Our security model admits several different types of Blocks:
PrOCeSS Blocks, Data Blocks, Port Blocks, and Unused Blocks
(see Definitions). A Process Block contains executable
instructions and may contain some data. A Data Block contains
only data and is not executable. Port Blocks will generally
be treated like RAM Data Blocks, except in the case of direct
memory access (DMA), when a Port, in cooperation with a DMA
controller, acts like a Process. We will treat DMA later when
we discuss extensions to the basic second-order policy.

Executinq, Readina, and Writinq

The Definitions section gives exact meanings of ‘rExecutingfl,
“Reading”, “Writing”, “Instruction Pointer” (1P), and “Memory
Pointer” (MP) within the context of this report. That section
ZIISO defines certain control lines-- llInstruction Fetchtf (IF),
“Memory Read” (MR), and “Memory Write” (MW). These latter
control lines can be used to determine whether the address
currently on the bus is the 1P or the MP (see below) .
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Table 2. Bus Content Versus Control Lines

Control Line States
Quantity on

IF MR Mw Address Bus

1 0 0 1P

o 1 0 MP

o 0 1 MP

The question of whether MP is pointing at memory (RAM or ROM)
or a port is resolved by use of a fourth control line, l~port
Access” (PA). We defer further discussion of PA until later.

Execution of a Block is considered to be occurring whenever
the 1P points to an address that is within that Block. Read
or write operations on a Block are occurring whenever the MP
points to an address “that is within that Block. It is
apparent that what we are calling a Process Block may, in
fact, be what is commonly thought of as a !tprocedureJl,
IIsubroutine”l or Ilfunctionll;and what we are calling a Data
Block may be composed of one or more IIdatastructures.~1

The Concept of Access Riuhts

An executing Process can be thought of as a Subject (see
Definitions) in the sense that it has control of the
processor. Also, all Blocks defined for the system can be
referred to as Objects because they may potentially be used in
some way by the Subject. The Subject may execute another
Process Block by causing the 1P to point to an address within
the bounds of the Object Process, or the Subject may read from
or write to an Object Block.

Usually software can be designed so the number of Object
Processes a Subject needs to execute is somewhat limited.
Similarly, a Subject usually needs to read or write only a
limited subset of the data memory. In assigning access rights
to a Subject, we explicitly declare which Objects are
accessible to that Subject and define exactly how the Subject
can access each Object.

,,
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The Second-Order Security Policy model described here assigns
to each Subject a set of Rights Vectors (the format of these
Vectors will be discussed later in a specific example), one
for each Block in the system. Each Rights Vector is a small
number of bits (one to two bytes) containing the rights of the
Subject with respect to the Object Block. Each Subject/Object
pair is assigned its own Rights Vector. So, for a system
partitioned into a number (B) of Blocks of which a number (P)
are Processes, we would need to define a matrix of B-times-P
individual Rights Vectors to specify the security policy for
the system. Using the Rights Vectors, we can, for example,
declare that Process A can execute Processes B and C, but none
other (Figure 3), and that Process A can read and write Blocks
X and Y, but none other (Figure 4).

Figure 3. Rights to Execute an Object

(SUBJECT) (BLOCKS)

------ ------ - - -- -- -- - - - - --

I PROCESS A I----------------->1 PROCESS B I
------------- I -------------

I ------ ------ -
ATTEMPTS I----->1 PROCESS C I

TO I ----- ----- ---
EXECUTE I ------ ------ -

------>[ PROCESS Q I
-------------

Figure 4. Rights to Read Or Write an

(SUBJECT) (BLOCKS)

------ ------ - ----- ----- ---

I PROCESS A I-----------------> I BLOCK X I
------------- I -------------

I ------ ------ -
ATTEMPTS TO READ -----> I BLOCK Y I
FROM OR WRITE TO -------------

-------------
------>1 BLOCK Z I

-------------

POLICY
RULING

--- PERMITTED

--- PERMITTED

--- ** ERROR, **
** DENIED **

Object

POLICY
RULING

--- PERMITTED

--- PERMITTED

--- ** ERROR, **
** DENIED **
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A Priori Ricfhts Possible

As with the First-Order Policy, we can deduce something about
the content of some of the Rights Vectors even without knowing
anything about a particular system to which these concepts
might be applied. The following matrix describes what we can
say, a priori, about the rights of the Subject with respect to
an Object of a particular type.

Table 3. Second-Order Policy: A Priori Rights Possible

MODE OF ACCESS TO OBJECT
OBJECT TYPE EXECUTE READ WRITE

RAM PROCESS Y/N Y/N Y/N

ROM PROCESS Y/N Y/N N

RAM DATA N Y/N Y\N

ROM DATA N Y\N N

PORT N Y/N Y/N

UNUSED N N N

Entries having a single letter are rights whose value can be
specified a priori; that is, without any knowledge of the
application. “Y” means the access is allowed; “N” means the
access is not allowed. An entry of “Y/N’Jmeans that this type
of access may or may not be allowed at the discretion of the
designer.
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Ideas for Partitioning the System

Why Partition? The designer may want to partition his system
into Blocks and devise a way of enforcing security policies
for the sole purpose of detecting as many errors as possible.
However, the desire to partition can also arise when some
aspects of the system are more critical than others. A
function of the system may be critical--perhaps the designer
wants to assure that a particular group of peripherals (a Port
Block) is activated only by a specified section of executable
code (a Process Block) . Similarly, certain data structures of
the system may be very important--the designer might want to
make sure that only one or a few Processes have access to
these structures. Finally, the designer may want to limit the
ways one Process can access another--for example, Process A
might be able to execute Process B, but the designer could
assure that A could neither read nor write B as data (such
writing would constitute self-modifying code, an undesirable
practice).

Granularity. Any degree of granularity can be used in
partitioning the system. The designer could define only a few
Blocks , tens of Blocks, or even hundreds. In one case a
Process could be equivalent to a procedure (a subroutine or
function) . In another, a group of procedures could be
considered to be a Process (coarser granularity) . However,
extremely fine granularity could be achieved by defining one
very important machine-language instruction to be a Process.
Similarly, the granularity of Data Blocks can be as fine as
one byte and as coarse as an arbitrarily large number of
bytes. Of course, the system can be segmented into a mixture
of small, medium and large-sized Blocks, because a Blockls
required size is determined by the needs of the system, not by
the sizes of the other Blocks. In practice, granularity will
be determined by a trade-off between implementation costs
(dollars, volume, and complexity) and the desired security
level of the system.

Assiqninq Riqhts. Once the system Blocks are identified, the
Rights Vector for each Subject-Object pair should be given
separate consideration, and its value should be defined
completely. In each case under consideration, rights to
access an Object in a particular way should be granted to a
Subject Process only if that Subject needs that access to do
its job.
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Implementation Methods Possible

Several implementation schemes could be used to enforce the
security policies described in this report. The three
approaches discussed here are the following--

1. enforcement done totally in software (no hardware
support) ;

2. enforcement implemented using designed-in, internal
security features of the microprocessor around which
the system has been built;

3. enforcement accomplished by adding an external monitor
to the basic system; the monitor can be either
processor-driven or composed of custom-designed logic.

The following discussion compares each method of enforcement
to the case of a system employing no enforcement mechanism.

Software-Only Enforcement

Enforcement totally in software might be implemented using an
artificially constructed instruction set. Each artificial
instruction would be either a macro or a subroutine call. The
source code would consist of statements composed of only these
l~allowedllartificial instructions plus a selected subset of
the native instruction set of the host microprocessor. Each
artificial instruction would translate to assembly code
capable of performing the additional checking required to
assure that any control transfer or memory access conforms to
the security policy. This approach would result in a much
larger body of software than that for a system with no
enforcement mechanism. Execution speed would be retarded
significantly; however, system function would otherwise be the
same. Details of implementing the policy enforcement would
strongly depend on the system application, and use of software
enforcement would, by its nature, place significant
constraints on the software design. Software development time
would be increased; however, the overall reliability impact
would probably be positive. The fielded application would
probably have fewer errors, and the design would be easy to
change. Inherent security of the system would be moderately
improved. However, because the security software would run on
the one and only processor in the system, such software could
not be considered to be an independent positive measure.
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Use of Internal Security Features of the Processor

Through use of internal security features of a microprocessor,
one might construct a security kernel that could mediate
requests, by each Process, for access to the various resources
(RAM, ROM, Ports) of the system. The Intel 80286 [5] is an
example of a microprocessor with these kinds of internal
features. The software required to support this approach
would be somewhat larger than for a system with no
enforcement, and as with software-only enforcement, execution
would be much slower. Otherwise, system function would be the
same. Use of this approach would have a significant impact on
the design and implementation of the software; however, the
software techniques used, and certainly the hardware
mechanisms (which are internal to the processor) would tend to
be reusable from one application to the next (not strongly
application-specific) . Comments made for software-only
enforcement relating to development time, reliability, and
number of fielded errors apply here as well. Significant
improvement would be realized in inherent system security, and
this approach gives some measure of independence (from the
executing software) in detection of security violations.

External Hardware-Based Monitor

One might construct an external hardware-based monitor to
enforce the security policies. If the monitor were processor-
driven, system operating speed would be retarded. A
nonprocessor implementation that would allow the system to run
at full speed is preferable and is assumed here. No
additional software would be required to support the monitor.
System function would be the same as for a system with no
enforcement mechanism. Although size of the software would
not be affected, the control flow, module structures, and data
structures would need to be tailored, in some respects, to
conform to monitor requirements. The monitor would be
reusable on other system applications having the same
processor. Development time would be increased. Costs would
be incurred in the monitor design and in the extra volume the
hardware would occupy in the fielded application. This
approach promises a reduction in the number of fielded
software errors. Inherent system security is greatly
enhanced, and this approach provides a positive measure that
can be totally independent of the host microprocessor and its
software.
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A Conceptual Desiqn Example

We present here a hypothetical system and describe how a
hardware-based Monitor could be constructed to enforce the
second-order security policy described earlier. We assume
that the totality of system resources has been logically
partitioned into a number (B) of Blocks (Process, Data, and
Port) , of which a number (P) are Processes.

Svstem Description

We will not specify the function of the system; however, as
depicted in Figure 5, the system contains RAM and ROM and can
communicate to peripherals through a number of 1/0 ports.
Figure 5 also shows the Hardware Monitor (to be described
below) . Note that the Monitor has access only to the
processor’s control lines and the address bus and not to the
data bus.

Outputs of the Monitor include an Iterror’!line, which
indicates when an error has occurred; an “error register!!,
which contains information about the type of error; and
IItrusted control lines”, to be described later. The error
line is used here as a hardware interrupt to the processor.
In this implementation, an interrupt handler evaluates the
contents of the error register and decides upon a course of
action-- attempted recovery, system reset, or system shutdown.
In the case of attempted recovery, the interrupt handler can
reset the Monitor’s error register, allowing processing to
proceed.

The error line could also be processed in hardware and not fed
back to the processor. This might be done if no recovery is
attempted and the system is simply to be either reset or shut
down in response to an error condition. In this case, the
system reset would be used to reset the Monitor’s error
register.

The Hardware Monitor

Figure 6 shows a diagram of the three Hardware Monitor
components. The Block Discriminator Bank determines the index
of the Object Block being accessed by the processor. Having
kept track of which Process is the Subject, the Rights Vector
Decoder uses the Object Index to decode the Rights Vector for
the current Subject/Object pair (coincidence) . The Rights
Vector is then presented to the Authenticator, which
determines whether an error has occurred and, if so, the type
of error.
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Block Discriminator Bank. By decoding the address bus and the
system’s control lines, the Block Discriminator Bank
determines which Block in the system is being accessed on the
current Access to Instruction Memory (AIM) or Access to Data
Memory (ADM) (see Definitions). Figure 7 shows details of the
Block Discriminator Bank. One output of the Block
Discriminator Bank is the Object Index; this index identifies
the Block being accessed by the Subject Process. The Object
Index is Q bits long; this is the number of bits required to
express the number (B) of system Blocks. The other outputs
are the lines “inside”, “top!!,and IIbottom.tlThe inside line
is asserted whenever the address-bus contents points to a
location within one of the B Blocks of the system. Failure of
this line to be asserted on either an AIM or ADM would
constitute an error condition. The top and bottom lines are
asserted whenever the address-bus contents point to either the
first or last address, respectively, of the Object Block. See
Entrv and Exit Point Enforcement, page 37, for a discussion of
the possible uses of ‘Itop”and I’bottom.’!

Block Discriminator Cell. The primitive discrimination
element is the Cell, shown in Figure 8. Each Cell contains a
stored copy of the first address (lower bound) and last
address (upper bound) of the Block to which it corresponds. A
window detector determines whether or not the current address
on the bus falls within the bounds of the Cell. Ambiguities
between memory and port addresses are resolved using the Port
Access (PA) line, not previously mentioned in the description
of the Block Discriminator Bank. Although Figure 8 shows a
I!PointerRegister”, no latching of the pointer is required at
this point, avoiding the need for any clocking of the Block
Discriminator Bank.

Riqhts Vector Decoder. The Rights Vector Decoder is shown in
Figure 9. Control lines and the Object Index serve as inputs.
The Object Index is latched into the Object Index Register by
either IF, MR, or MW. Recall that the Object Index identifies
the Block being accessed by the Subject on the current AIM or
ADM . The Subject Index for the current decode will have been
latched into its register on the last previous AIM. The
Subject-Index/Object-Index pair provides a row-column address
into a ROM that contains the Rights Vector information. Once
the Rights Vector is stable, it can be clocked into its
register on the falling edge of either IF, MR, or MW. The
Subject Index will be updated only if the current access is to
instruction memory (i.e., an AIM) . Therefore, the update can
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be clocked by a slightly delayed falling edge of the IF
control line. The !Isystemresett’ line (herein assumed to be
one of the system control lines) initializes the Subject Index
to the index of the bootstrap Process Block when the system is
started or reset.

RicfhtsVector Format. The format of the Rights Vector is
shown in Figure 10, below.

Figure 10. Rights Vector Format
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The U bit is one when the corresponding Object Block is valid
and in use. R, W, and X indicate, when asserted, the right of
the Subject to read, write, or execute the Object. The A bit,
when asserted, indicates that the auxiliary operation
indicated by the Auxiliary Request (AR) line is allowed for
the current Subject/Object coincidence. Use of this feature
allows the Monitor to enforce known relationships between the
status of the auxiliary operation (via the AR line) and the
current state of the system (the Subject/Object pair) . The
Trusted Control Lines contain a code available to the system.



This code can be used with the assurance that the system state
corresponds to one or a small number of known Subject/Object
coincidences. These lines can be used to enable or inhibit
data gates or functional control lines based upon this
knowledge of the system state. The three trusted control
lines we show can represent a total of eight system states.
More control lines could be added to the Rights Vector to
increase the number of represented system states.
Representation of all possible Subject/Object coincidences
would require a number of bits equal to the base-two logarithm
of B times P. If this many states were to be represented,
this information would not be included in the Rights Vectors.
Rather, the Subject Index and Object Index would be made
available to the system as outputs of the Rights Vector
Decoder. This would allow the system logic to directly decode
and act upon this detailed and trusted knowledge of the system
state. Most likely, a smaller number of trusted control line
bits would be needed in practice. Our example provides for
only three --C2, Cl, and CO.

The Authenticator. Figure 11 shows a block diagram of the
Authenticator. The Rights Vector, system control lines, the
inside line, and the “error register reset” line serve as
inputs. If U is zero, the Subject is trying to access an
unused Object Block, and an error condition is indicated. If
R is zero (reading not allowed) and MR is asserted (reading is
attempted) , an IIADM read error’! is detected. If W is zero
(writing not allowed) and MW is asserted (writing is
attempted) , the IIADM write error” line is asserted.
Attempting to execute (IF asserted) when X is zero (execution
not allowed) will cause MAIM error!! to go to one. An
attempted auxiliary operation (AR asserted) without a value of
one in A will cause “AUX error!!to go high. Finally, any
access to resources for which the “inside” line is not
asserted would cause the “invalid pointer” line to go to one.

Error signal lines are collected in the error register. Al1
error lines are or-gated together to create the error output

,. line. The error register will be reset by the error register
reset, which comes from the processor through an 1/0 port, or
by the system reset. The trusted control lines come directly
from the Rights Vector register to the output of the
Authenticator. These lines would be decoded or used as
discrete line inputs to the system logic or, possibly, to the
processor via an 1/0 port. The diagram shown in Figure 11 is
conceptual in that required latching for control lines MR, MW,
IF, etc., and for the error register is not shown.
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Figure11.Authenticator
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Handlin~ of Interrupts. Interrupts can be accommodated with
the Monitor. Interrupt service routines will be treated just
like any other Process and assigned to Process Blocks. Al1
Processes in which interrupts are enabled will be given !Ireadtt
access to the Data Block(s) where the interrupt vectors are
stored. If a Process can be interrupted, it must have execute
rights to the handler of the corresponding interrupt.
Generally, a Process should not be granted execute rights to a
handler of an interrupt that is disabled during the time the
Process executes. The need to define which handlers each
Process has rights to will force the designer to explicitly
define a philosophy or policy for handling interrupts.

Once a handler starts executing, it must be treated just like
any other Process, so the designer must define the rights of
this handler to all other Blocks, in particular, to handlers
of subsequent interrupts that might occur. This again points
to the need for a well defined plan for enabling and
prioritizing interrupts.

The Work of Namioo and McCluskev
We discovered References [8] and [9] after we had completed
the first draft of this report. These references reveal that
Namjoo and McCluskey originated many of the concepts we
describe in this report concerning verification of proper
memory-access behavior using an external watchdog device.
Here we contrast and compare their work with ours. They
propose using a processor-based external monitor; we propose a
hardware implementation. Their approach appears to be
targeting larger systems, i.e., machines in the mini-computer
class with a complex operating system (the VAX-11 is used as
an example) . While our hardware approach could also be
implemented in larger systems, the scope of our work is
limited to small, microprocessor-based systems that may not
have an operating system. They propose dynamically changing
the partitioning and access-rights information of the system
so that different software applications can run under
different sets of security parameters. Trusted software,
therefore, must load these parameters. Our approach, which
assumes that a single application is executing, uses
unchanging security parameters. Their “Segment Mapping Tabletr
defines how resources are partitioned. The “Segment Access
Table” corresponds closely to our Rights Vector matrix. The
Rx and Ry registers of [8] correspond to our Object Index and
Subject Index, respectively. The work of Namjoo and McCluskey
predates ours, and there is a significant amount of overlap
between their results and ours. Nonetheless, we feel that our
more detailed treatment of the security policies and our
conceptual design of the Hardware Monitor serve to augment and
extend the results they have already reported.
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Interpretation of the ADDroach’s Sicmificance

This section interprets the significance of the security
policies and of their enforcement using an independent
Hardware Monitor.

A Positive Security Measure

Effective enforcement of the second-order policy provides a
positive security measure against erroneous behavior of a
microprocessor-based system. The external monitor approach
has several advantages:

- the positive measure is easily identifiable; that is,
one can point to it;

- the policies and the Monitor design are very simple;
therefore, they can be understood and analyzed;

- the Monitor is a separate entity; so, it is independent
of the microprocessor and its executing software.

Functional Advantages

- the Monitor can run in real time without slowing down
the processor;

- the Monitor!s design should be reusable on different
systems that use the same microprocessor;

- major portions of the Monitor could be implemented in a
custom VLSI circuit to minimize its size.

Errors the Monitor Can Detect
.

The Monitor can detect errors that directly or indirectly
affect either the Instruction Pointer (1P) or the Memory
Pointer (MP). Some of these types of errors are--

- corruption of the stack causing invalid addresses for
data accesses or control transfers;

- corruption of the 1P causing an invalid instruction
fetch;



Errors the Monitor Can Detect, continued. ..

- illegal data accesses caused by hardware errors or
coding errors, especially in code with complex data
structures for which addresses are computed, e.g. ,
linked lists;

- illegal control transfers caused by hardware errors or
coding errors, especially in code with computed control
transfer destinations;

- invalid interrupts or interrupts occurring with no
interrupt handler.

Damacfe Confinement

Use of the external Hardware Monitor will reduce the amount of
damage to RAM data and instruction areas and to attached
peripheral devices that can occur when memory access errors go
undetected. In a partitioned, monitored system like the one
we have defined in our conceptual design example, direct
damage caused by erroneous behavior of a process is confined
almost exclusively to Blocks to which the Process has been
assigned rights of access. The notable exception is that an
erroneous write access probably cannot be prevented even
though the Monitor detects the error before the end of the bus
cycle on which the illegal write occurs.

A Basis for a Fault-Tolerant System

Given the atomic structure of the system (i.e., the separation
and independence of the Blocks) , this error-detection scheme
could provide a basis for implementing a fault-tolerant system
that is able to recover from errors [6,7]. Such a fault-
tolerant system would save its state whenever control passes
from one Subject to the next. The state would be just the
Object Blocks the current Subject has I!write’taccess to, in

,, addition to the state of the processor itself.

Another Philoso~hY of Use and Benefits

Even if the system does not attempt recovery when an error
occurs, significant benefits accrue from this approach.
Foremost, the partitioning and its enforcement can auarantee
certain conditions that provide the designer with a true
security enhancement. This will remove from the software some
of the burden of providing security. More importantly, it
will make the system much easier to analyze from a security

...
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point of view. For example, if a particular port is attached
to a sensitive or valuable resource, and we want to assure
that this port is only addressed from a particular Process, we
can enforce this behavior through use of the Rights Vectors
and the external Monitor. Any security analysis of the
software can then concentrate on only that portion of the
software that can legally access the critical port.

Reduction in the Number of Fielded Errors

The rigid definition of the access rights of each Subject to
each Object and the integration of the Monitor into the system
during the development process will likely allow detection and
elimination of design errors that would not have been detected
without the Monitor.

Limitations of the Approach

Certainly, error propagation from one Process to another is
still possible without immediate detection. For example, a
process might write erroneous data to memory without making
any accesses that the Monitor would declare illegal. Any
other Processes having read-access to this memory could suffer
errors from the contaminated data. Likewise, a Process could
pass control to another Process (to which it has rights of
access) in an erroneous way. The erroneous transfer could
occur at the wrong time; or the transfer destination, though
within a proper executable Block, may be incorrect.

These second-order error-propagation mechanisms can be
countered, in many cases, by using dynamic software-based
error checking. For example, redundancy checks of stored data
and reasonableness checks of results of computations can
improve integrity of the stored data. Likewise, the program
can dynamically check its own control flow by recording a
history of the path of the instruction pointer and comparing
this history to a stored description of the program’s expected
behavior. Therefore, an integrated approach, using the
external Hardware Monitor along with dynamic software error
checking, can yield broader error coverage than the Monitor
alone can provide.



Extensions to the Basic ADDroach

We believe that the Hardware Monitor we have described can be
built and will be effective. We intentionally avoided adding
more complicated features to the policies and the Monitor so
the presentation would be clear and simple. However, features
described below might extend the capabilities of the Monitor
and make it more effective. Of course, the added features
would increase the Monitor’s complexity.

A Watchdoa Process Timer

A watchdog timer might be incorporated into the Monitor to
measure the execution time of one or more software Processes.
The simplest implementation would provide for a voluntary
measurement, wherein a Process would load a time-limit
quantity into the timer!s counter and then strobe the timer,
causing it to begin its countdown. The user Process would
then be responsible for reading the timer and determining
whether the execution time was within bounds. This approach
does not possess the attribute of independence, because the
Process itself initiates and evaluates the timing measurement;
in other words, this approach is based upon implicitly
trusting the software and the processor. It would be possible
to obtain independence of the timing measurements if the
Monitor contained pre-stored time-limit quantities for the
Processes of interest and if the Monitor were smart enough to
determine when a Process begins and when it ends. Determining
when a Process begins is not difficult; the Monitor simply
detects the first occurrence of the corresponding Subject
Index at the output of the Block Discriminator Bank.
Determining when a Process ends is difficult. The Monitor
must distinguish between exits from the Process caused by
Ilcallsl!and those caused by “Returns.“ This will be discussed
later in the section on I’Entryand Exit Point Enforcement.’!

Ways to Reduce the Number of Block Discriminator Cells

In our example, there was one Cell for each Block of the
system. A reduction in the number of required Cells would
seemingly simplify the Monitor hardware and reduce Monitor
cost . The following two paragraphs describe a technique that
uses loadable, multi-purpose Cells to reduce the total Cell
count.
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Process Declares Its Index to Monitor. We could require that
each Process, whenever it is entered or reentered, declare its
Subject Index to the Monitor. The Monitor would then fetch
the address bounds corresponding to the “claimed” Index from a
ROM, transfer them to a Cell, and then verify, using a latched
value of 1P, that 1P falls within the bounds. The Monitor
could easily determine when 1P exited the current Process and
would expect a new Index declaration within a specified time
of the exit. Failure to receive a declaration would cause an
error condition. This technique, which would have little
impact on processing speed and moderate impact on Monitor
complexity, would reduce the number of Cells required in the
Monitor hardware.

Process Declares Indices of Needed Obiects to Monitor. To
complete the scheme for reduction of the number of Monitor
Cells, we would require that each Process, whenever it is
entered or reentered, declare to the Monitor the indices of
all Objects to which it requires access. The Monitor would
then fetch the address bounds of each of the “requested!!
Objects from a ROM and transfer each to a Cell in the Block
Discriminator Bank. This technique, when coupled with self-
declaration of the Subject Index described above, would reduce
the number of required Cells to a number equal to one plus the
maximum number of Objects required by any Process. Although
the number of required Cells is reduced substantially, we have
actually increased the Monitor’s complexity by requiring that
it lookup and load Subject and Object bounds. This approach
also significantly impacts the software design. Finally, the
Monitor will no longer be able to keep up with the processor.

Entrv and Exit Point Enforcement

It should be possible to designate a “first entry point” and a
“final exit point” for each Process and to design a Monitor
that could discriminate these entries and exits from those
that occur during calls-to and returns-from procedures
(subservient Processes). To accomplish this, the Monitor
would require access to the data bus (recall that the Monitor
in the example did not require this) and would require some
knowledge of the processor’s control-transfer instructions
(CALL, RETURN, JUMP, etc.). The “top” and “bottom” lines of
the conceptual design example could also be used, in certain
cases, to determine when a Process is first entered or last
exited. The Monitor could use this discrimination feature to
assure that the Process is always first entered and always
last exited at particular known values of 1P. This feature
would also be useful to aid in implementing a completely
independent process timer.



Enforcement of Returns to the Proper Routine

Yet another enhancement would be the ability of the Monitor to
determine that a Procedure, once called, returned to the
calling Process when finished. In addition to being smart
enough to determine and verify !Ifirstentry points’t and ‘Ifinal
exit points”, the Monitor would need a stack to store the
history of the calling sequence, from Process to Process, in
order to implement this feature.

Handlina Direct Memory Access

Many microprocessor-based systems use DMA to speed up data-
transfer times to and from peripherals. During a DMA, a smart
peripheral, with the help of a DMA controller, provides
addresses and data to the system buses and directly
reads/writes data from/to memory or other ports, thereby
bypassing the main microprocessor. The approach we would take
to handling DMA is to treat the smart peripheral like a
Process. Therefore, the port would be designated both as a
Port Block and as a Process Block. Probably the format of the
Rights Vector would not be affected by treatment of DMA. We
would assume that each smart peripheral is assigned a unique
DMA channel and a unique Data Block to which it will have
access. We would also assume that a smart peripheral could
only read or write on DMA cycles dedicated to its particular
DMA channel.

Time-Varvinq Security Policies

. .

..*

We have assumed that system security parameters (Block bounds
and Rights Vectors) are fixed during production of the system
and do not change as the system executes. One could devise a
Monitor whose security parameters could be loaded at power-up
and dynamically changed at various times as the system
executes. This approach is taken in [8].
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Precluding Execution of Forbidden Instructions

. .

.,.

The designer may want to assure that elements of a subset of
the processors instruction set are never executed. The
Monitor could be designed to detect when any one of these
forbidden instructions is fetched from instruction memory.
This feature would, of course, require the Monitor to have
access to the microprocessor’s data bus.

Some Problems With the Armroach

There are several potential difficulties with the basic
approach of the second-order policy and the Hardware Monitor.
This section discusses some of these problems.

Dvnamic Allocation of Memory

The static partitioning required by the method does not lend
itself well to dynamic (run-time) allocation of RAM. The use
of dynamic memory allocation usually implies that there is an
available heap of memory that can be used to provide storage
areas, on demand, as needs arise.

Our method does not preclude dynamic allocation, just as it
does not prevent reuse of Data Blocks for multiple purposes.
However, care must be taken in controlling the management of
memory because any allocation that causes an Access to Data
Memory (ADM) that is not in accordance with the decoded Rights
Vector will cause the Monitor to indicate an error condition.
A prudent approach would be to dynamically allocate, from a
large heap, memory to be used for storage of data that is
considered to be in no way critical. Data Blocks to be used
for critical or sensitive data should be limited to use for a
single purpose; therefore, dynamic allocation is not
appropriate for that type of data.

Overlays

Overlays amount to reuse of RAM by different bodies of
executable code. Therefore, the problems associated with
overlays are similar to those seen with dynamic allocation.
The use of overlays is not precluded by the method; contents
of RAM Process Blocks can change dynamically. However,
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because the Rights Vectors and Process Block bounds are
constant, any Processes overlaid onto a particular Process
Block must fit within the bounds of that Block and must behave
in accordance with the Rights Vector information stored in the
Monitor.

A reasonable way of dealing with this limitation is to allow
overlays for noncritical Processes and to avoid overlays for
Processes performing more important or critical functions.

Use of Hiqh-Level Lanauaqe

If a high-level language is used to implement the software,
the designer may have difficulty maintaining absolute control
over relative placement, in memory, of the various Process and
Data Blocks. We do not think this is a serious problem.
Nearly all compilers will preserve, or can be forced to
preserve, contiguity of the compiled instructions that compose
a Process Block and of data elements that compose a Data
Block. Further, the linker can be made to produce a report
showing the relative location and length of each Block. So,
absolute control during compilation and linking is probably
not necessary as long as complete knowledge of the structure
of the executable file can be obtained from the linker.

Pre-fetchina of Instructions

Some processors pre-fetch several instructions at one time.
This creates a possible problem with respect to fetches of
instructions lying near the end of a Process Block. When pre-
fetching past the end of the Block occurs, the Monitor will
indicate an error condition. This problem can be remedied by
padding past the final exit point of the Block with null
operations or some other known operational code.

Use With Commercial O~eratinq Svstems

Using the Monitor on a system employing a commercial software
operating system will present several problems. The designer
may not have design information and source code for the
operating system. Therefore, he may not have enough
information to define Block partitions within the operating
system software. Even if he can do the partitioning, he
cannot intelligently assign access rights if he does not
understand the details of how the operating system works.
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Conclusions

In developing the second-order security policy, we have
borrowed security concepts normally applied to large multi-
user systems and translated them into concepts that can be
applied to microprocessor-based systems. We have presented a
conceptual design for a Hardware Monitor that can be
constructed to enforce the second-order policy in real time,
without retarding the processing speed of the system. The
Monitor could be reused on other systems based on the same
processor.

Use of the Monitor provides an independent, real-time
capability for dynamically detecting erroneous accesses to
memory and to input/output ports and for flagging improper
program flow from Block to Block. The Monitor can be used as
an error detector to provide the basis for a fault-tolerant
system. Or, the primary purpose of the Monitor can be to
provide a security enhancement that removes a significant
security burden from the software and greatly simplifies the
task of analyzing the system from a security point of view.

The basic approach could be extended to add enhanced features,
as described in a latter section of this report. With the
enhancements would come increases in complexity, degradations
in processing speed, and a decreased likelihood of reusability
of the Monitor for different systems employing the same
microprocessor. We have identified several possible
implementation problems with the approach; however, none of
the problems appear insurmountable.
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